Resonant inclination excitation of migrating giant planets
نویسندگان
چکیده
The observed orbits of extrasolar planets suggest that many giant planets migrate a considerable distance towards their parent star as a result of interactions with the protoplanetary disk, and that some of these planets become trapped in eccentricity-exciting mean motion resonances with one another during this migration. Using three-dimensional numerical simulations, we find that as long as the timescale for damping of the planets’ eccentricities by the disk is close to or longer than the disk-induced migration timescale, and the outer planet is more than half the mass of the inner, resonant inclination excitation will also occur. Neither the addition of a (simple, fixed) disk potential, nor the introduction of a massive inner planetary system, inhibit entry into the inclination resonance. Therefore, such a mechanism may not be uncommon in the early evolution of a planetary system, and a significant fraction of exoplanetary systems may turn out to be non-coplanar.
منابع مشابه
Origin of the Structure of the Kuiper Belt during a Dynamical Instability in the Orbits of Uranus and Neptune
We explore the origin and orbital evolution of the Kuiper belt in the framework of a recent model of the dynamical evolution of the giant planets, sometimes known as the Nice model. This model is characterized by a short, but violent, instability phase, during which the planets were on large eccentricity orbits. It successfully explains, for the first time, the current orbital architecture of t...
متن کاملThe architecture of the GJ 876 planetary system Masses and orbital coplanarity for planets b and c ⋆
We present a combined analysis of previously published high-precision radial velocities and astrometry for the GJ 876 planetary system using a self-consistent model that accounts for the planet-planet interactions. Assuming the three planets so far identified in the system are coplanar, we find that including the astrometry in the analysis does not result in a best-fit inclination significantly...
متن کاملThe Stability and Prospects of the Detection of Terrestrial/habitable Planets in Multiplanet and Multiple Star Systems
Given the tendency of planets to form in multiples, and the observational evidence in support of the existence of potential planet-hosting stars in binaries or clusters, it is expected that extrasolar terrestrial planes are more likely to be found in multiple body systems. This paper discusses the prospects of the detection of terrestrial/habitable planets in multibody systems by presenting the...
متن کاملFormation of Earth-like Planets during and after Giant Planet Migration
Close-in giant planets are thought to have formed in the cold outer regions of planetary systems and migrated inward, passing through the orbital parameter space occupied by the terrestrial planets in our own Solar System. We present dynamical simulations of the effects of a migrating giant planet on a disk of protoplanetary material and the subsequent evolution of the planetary system. We nume...
متن کاملThe effect of type I migration on the formation of terrestrial planets in hot-Jupiter systems
Context. Our previous models of a giant planet migrating through an inner protoplanet/planetesimal disk find that the giant shepherds a portion of the material it encounters into interior orbits, whilst scattering the rest into external orbits. Scattering tends to dominate, leaving behind abundant material that can accrete into terrestrial planets. Aims. We add to the possible realism of our mo...
متن کامل